Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Awardee:UNIVERSITY OF ARIZONA
Doing Business As Name:University of Arizona
PD/PI:
  • Scott Saleska
  • (520) 626-1500
  • saleska@email.arizona.edu
Co-PD(s)/co-PI(s):
  • Jennifer Croissant
  • Peter A Troch
  • Katrina M Dlugosch
  • Malak M Tfaily
Award Date:09/18/2021
Estimated Total Award Amount: $ 3,513,801
Funds Obligated to Date: $ 1,158,103
  • FY 2021=$1,158,103
Start Date:10/01/2021
End Date:09/30/2026
Transaction Type:Grant
Agency:NSF
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.083
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
Federal Award ID Number:2121155
DUNS ID:806345617
Parent DUNS ID:072459266
Program:GCR-Growing Convergence Resear
Program Officer:
  • Dragana Brzakovic
  • (703) 292-5033
  • dbrzakov@nsf.gov

Awardee Location

Street:888 N Euclid Ave
City:Tucson
State:AZ
ZIP:85719-4824
County:Tucson
Country:US
Awardee Cong. District:03

Primary Place of Performance

Organization Name:University of Arizona
Street:
City:
State:AZ
ZIP:85721-0038
County:Tucson
Country:US
Cong. District:03

Abstract at Time of Award

The U.S. and the world today face the increasingly urgent question of how to better understand and manage complex physical-biological systems in order to address pressing problems such as: restoration of degraded landscapes, sustainable management of ecosystem services, including water cycling and supply, ecosystem nutrition, biodiversity, carbon sequestration in the face of global change, and eventually, terraforming planets beyond earth. At the root of these problems is the fundamental question of landscape terraformation: how does life expand and sustain itself, in increasingly complex and symbiotic forms, across landscapes at multiple scales to transform bare rock into complex multi-function ecosystems? This Growing Convergence Research team of earth scientists (hydrologists, geochemists), biologists (evolutionary genomicists, ecosystem ecologists), and social scientists (anthropologists who study cultures of science) will leverage a unique and powerful “convergence instrument” -- University of Arizona’s Landscape Evolution Observatory, consisting of three large experimental hillslopes at Biosphere 2 -- to both reveal key mechanisms of landscape terraformation and catalyze new ways of interdisciplinary thinking to empower and diversify this next generation of scientists to achieve convergence research. The central investigation of this work is of how small scale hydrological, geochemical, ecological and evolutionary processes interact to create emergent landscape-scale terraformation, across three stages of biological complexity: from simple lithotrophic microbial communities (including microbial crusts), to non-vascular plants (mosses without roots), to vascular plants with roots and sophisticated hydraulic architectures. Experiments will test model representations of water flow through landscapes, its effects on the transformation of rock via weathering at different scales, and thence, feedbacks which modify those landscapes and their biological habitability. At the same time, the composition and function of organisms as they colonize barren landscapes and develop symbiotic associations (especially for N fixation) will be manipulated to select from biological diversity in genes, traits, and functions, in order to identify the biological feedbacks which simultaneously transform hydrological and geochemical processes. In the process, convergence research will be studied, understood, and reflected through a novel, social science-based “Cultures of Convergence Science” investigation of the entire team in an ethnographic inquiry designed to identify practices conducive to successful convergence research. This proposal is supported in part by the Critical Zone Collaborative Network program. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.