Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Doing Business As Name:University of Delaware
  • Norman J Wagner
  • (302) 831-8079
Award Date:07/29/2021
Estimated Total Award Amount: $ 513,693
Funds Obligated to Date: $ 513,693
  • FY 2021=$513,693
Start Date:10/01/2021
End Date:09/30/2025
Transaction Type:Grant
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.041
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:Collaborative Research: DMREF: Rheostructurally-informed Neural Networks for geopolymer material design
Federal Award ID Number:2118944
DUNS ID:059007500
Parent DUNS ID:059007500
Program Officer:
  • Robert McCabe
  • (703) 292-4826

Awardee Location

Street:210 Hullihen Hall
Awardee Cong. District:00

Primary Place of Performance

Organization Name:University of Delaware
Street:210 Hullihen Hall
Cong. District:00

Abstract at Time of Award

Geopolymers are inorganic and non-crystalline structural materials that can be obtained from natural soils via a chemical activation. They have great potential as additives to reduce cement consumption in construction and thus can help reducing green-house gas emissions of cement manufacturing. They also promote the adoption of local soil resources for traditional and 3D printing-based construction. Important for human space exploration, geopolymers can be also formed from lunar and Martian soils with limited water, and thus are excellent candidates for space infrastructure such as landing pads and shelters. However, at present processing of geopolymers into desirable structures remains far behind their laboratory scale performance, due to the wide range of chemistries and characteristics of different indigenous geopolymers. This award combines experiments, microscopic simulations, and machine learning approaches that will enable scientists and engineers to effectively design and control geopolymers properties and performances. In collaboration with the Air Force Research Laboratory, the team will educate and train future materials researchers with multi-tool skills that span experiments, simulations, and data-driven algorithms. Geopolymers are amorphous and porous solid matrices that develop as gels when an alumino-silicate source (typically from clays) reacts with an alkali hydroxide or alkali silicate solution, yielding ceramic-like structures and mechanics. The range of multiscale pore morphologies and material strengths of geopolymer gels makes them ideally versatile and potentially smart binders. However, the primary challenge hindering wide adoption of these sustainable materials is the complexity of controlling property development and processing, given the significant chemical variability that makes their design cycle difficult and empirical. Artificial intelligence approaches are required to bridge the gap between the deep fundamental understanding of a few materials and the need for sustainable processing of a wide range of material resources on earth and other planets with limited experimentation efforts. The team will construct a data-driven platform informed by integrated multiscale modeling and experiments, in order to accelerate design of processing routes for geopolymers into desirable structures. The PIs will work together to develop rheology-informed neural networks that use the multi-scale and multi-component dynamics of geopolymeric systems under load and in flowing conditions. To do so, they have planned a comprehensive interrogation of experiments and simulations that hierarchically span from the atomistic to macroscale. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.