Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Awardee:REGENTS OF THE UNIVERSITY OF MINNESOTA
Doing Business As Name:University of Minnesota-Twin Cities
PD/PI:
  • Christopher Leighton
  • (612) 625-4018
  • leighton@umn.edu
Award Date:05/11/2021
Estimated Total Award Amount: $ 433,531
Funds Obligated to Date: $ 433,531
  • FY 2021=$433,531
Start Date:08/01/2021
End Date:07/31/2024
Transaction Type:Grant
Agency:NSF
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.049
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:Long-Range Spin Transport in Light-Metal Alloys
Federal Award ID Number:2103711
DUNS ID:555917996
Parent DUNS ID:117178941
Program:CONDENSED MATTER PHYSICS
Program Officer:
  • Tom Oder
  • (703) 292-8590
  • toder@nsf.gov

Awardee Location

Street:200 OAK ST SE
City:Minneapolis
State:MN
ZIP:55455-2070
County:Minneapolis
Country:US
Awardee Cong. District:05

Primary Place of Performance

Organization Name:University of Minnesota-Twin Cities
Street:421 Washington Ave SE
City:Minneapolis
State:MN
ZIP:55455-0339
County:Minneapolis
Country:US
Cong. District:05

Abstract at Time of Award

Non-Technical Abstract Magnetic materials are ubiquitous in technology, from the permanent magnets all around us to the precisely engineered magnetic materials in the powerful hard disk drives that enable cloud data storage. Spintronics is the scientific field that underpins such technologies, based on control of the property of electrons known as spin. One major limitation in the field of spintronics is that is very challenging to move electron spins over even microscopic distances; the ability to do so would unlock extraordinary technological potential, including massively reducing the power consumption of computers. This project is addressing exactly this challenge, not only seeking long-range transport of electron spins, but doing so in industrially-relevant materials based on simple metals. In addition to advancing the fundamental understanding of the physics of this process, broader impacts are being achieved through the high technological relevance of the work, through education and training of graduate and undergraduate students (thus contributing to a skilled US workforce in the electronic device sector), and through outreach to the public in conjunction with the Science Museum of Minnesota. Technical Abstract In spintronics, injection of spins across interfaces, and their subsequent transport, is central to the function of many devices. Such devices have already massively impacted data storage and processing, with potential for further advances. One particularly exciting prospect is long-range spin transport through materials, which could realize transformative capabilities such as spin interconnects and spin accumulation sensors. Fundamental research on long-range spin transport has focused almost entirely on semiconductors and insulators, despite metallic spintronics being well-established and amenable to technology. This is because spin diffusion lengths in conventional polycrystalline non-magnetic metallic thin films are typically only 100’s of nm, limited by defect-induced spin relaxation. This project seeks to directly alleviate this limitation. Orders-of-magnitude increases in spin diffusion lengths in nonmagnetic metallic thin films are being sought via novel application of rationally-designed light-metal alloys, using theory-guided compositional tuning of electronic structure and band filling to controllably suppress spin relaxation. In addition to advancing the fundamental understanding of the relevant physics, broader impacts are being achieved through the high technological relevance of the work, through education and training of graduate and undergraduate students, and through outreach to the public in conjunction with the Science Museum of Minnesota. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.