Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Awardee:LOUISIANA STATE UNIVERSITY
Doing Business As Name:Louisiana State University
PD/PI:
  • John C Flake
  • (225) 578-3386
  • johnflake@lsu.edu
Co-PD(s)/co-PI(s):
  • Yushan Yan
  • Christopher Arges
  • Noemie Elgrishi
  • Koffi P Yao
Award Date:09/16/2021
Estimated Total Award Amount: $ 3,999,960
Funds Obligated to Date: $ 999,990
  • FY 2021=$999,990
Start Date:10/01/2021
End Date:09/30/2025
Transaction Type: Cooperative Agreements
Agency:NSF
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.083
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:RII Track-2 FEC: Fundamental Insights into the Durability and Efficiencies of CO2 Electrolyzers
Federal Award ID Number:2119435
DUNS ID:075050765
Parent DUNS ID:940050792
Program:EPSCoR Research Infrastructure
Program Officer:
  • Jose Colom
  • (703) 292-7088
  • jcolom@nsf.gov

Awardee Location

Street:202 Himes Hall
City:Baton Rouge
State:LA
ZIP:70803-2701
County:Baton Rouge
Country:US
Awardee Cong. District:06

Primary Place of Performance

Organization Name:Louisiana State University and A&M College
Street:
City:Baton Rouge
State:LA
ZIP:70803-0100
County:Baton Rouge
Country:US
Cong. District:06

Abstract at Time of Award

The objective of this work is to advance industrially-viable CO2 electrolyzers and to develop a diverse workforce for sustainable chemical manufacturing. Currently, common products such as detergents, anti-freeze, and tennis shoes are made using natural gas or crude feedstocks and non-renewable energy. A new process, discovered in 1985, showed that CO2 could be converted into the precursor chemicals needed for these products; however, the rates and efficiencies were far from being economically viable. Outcomes from this project will reveal the fundamental science that controls durability and efficiency of CO2 electrolyzers. The work is critical to improve the sustainability of one of America’s largest manufacturing sectors. Chemical manufacturing is responsible for supporting over 25% of the GDP and over 6 million jobs in the US. The work is particularly important to the economies of Delaware and Louisiana where chemical manufacturing is ranked either first or second in terms of manufacturing’s contribution to gross state product. Further, this research project will directly engage a diverse group of 9 investigators and over 70 graduate and undergraduate students along with representatives from leading chemical manufacturers. Other outreach activities are planned to provide meaningful experiences related to STEM education and careers for thousands of K-12 students in Delaware and Louisiana. The technical outcomes from this project will advance electrolytic production of ethanol and ethylene from CO2 and H2O. We seek to understand critical parameters that control durability and efficiencies of CO2 electrolyzers including the underlying science that governs failures. Our work focuses on two types of polymeric membranes (anionic and bipolar) along with copper, silver and cascade (molecular + copper) electrocatalysts. Research aims are organized into: systems, materials and characterization efforts. The system work focuses on electrolyzer design, integration and technoeconomic analyses. The materials work focuses on interfaces of polymeric membranes and electrocatalysts. Characterization work focuses on atomic and molecular interactions and will be probed using synchrotron-source x-rays, operando Raman and identical location tunneling electron microscopy. Outcomes from the work would reveal how anionic exchange membrane and bipolar membrane approaches influence reaction behaviors and stability over long periods of electrolysis, how failures occur, how to mitigate failures (including designing ideal interfaces) and how to perform accelerated testing of promising electrolyzer materials. The planned activities and collaborations leverage unique strengths and improve the research capacities of two flagship universities: Louisiana State University and the University of Delaware. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.