Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Awardee:UNIVERSITY OF DELAWARE
Doing Business As Name:University of Delaware
PD/PI:
  • James Hiebert
  • (302) 831-1655
  • hiebert@udel.edu
Co-PD(s)/co-PI(s):
  • Lynsey Gibbons
  • Jamila Q Riser
  • Erica G Litke
  • Valerie C Maxwell
Award Date:03/17/2021
Estimated Total Award Amount: $ 2,906,445
Funds Obligated to Date: $ 1,470,932
  • FY 2021=$1,470,932
Start Date:09/01/2021
End Date:08/31/2025
Transaction Type:Grant
Agency:NSF
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.076
Primary Program Source:040106 NSF Education & Human Resource
Award Title or Description:Improving Professional Development in Mathematics by Understanding the Mechanisms that Translate Teacher Learning into Student Learning
Federal Award ID Number:2100617
DUNS ID:059007500
Parent DUNS ID:059007500
Program:Discovery Research K-12
Program Officer:
  • Michael Steele
  • (703) 292-0000
  • msteele@nsf.gov

Awardee Location

Street:210 Hullihen Hall
City:Newark
State:DE
ZIP:19716-0099
County:Newark
Country:US
Awardee Cong. District:00

Primary Place of Performance

Organization Name:University of Delaware
Street:210 Hullihen Hall
City:Newark
State:DE
ZIP:19716-0099
County:Newark
Country:US
Cong. District:00

Abstract at Time of Award

A great deal is known about the effects of mathematics teacher professional development on teachers' mathematical knowledge for teaching. While some professional development programs show meaningful changes in teacher knowledge, these changes do not always translate into changes in teacher practice. This project explores the mechanisms by which teachers translate what they learn from professional development into their teaching practice. The goal of this project is to study how the knowledge and skills teachers acquire during professional development (PD) translate into more conceptually oriented mathematics teaching and, in turn, into increased student learning. The project builds on a promising video-based PD that engages teachers in analyzing videos of classroom mathematics teaching. Previous research indicates that teachers who can analyze teaching by focusing on the nature of the mathematical learning opportunities experienced by students often teach more effectively. The researchers aim to better understand the path teachers follow as they develop this professional competency and translate it into more ambitious teaching that supports richer student learning. The lack of understanding of how a PD program can reach students is a significant barrier to improving the effectiveness of PD. To build this understanding, the researchers aim to test and refine an implementation theory that specifies the obstacles teachers face as they apply their learning to their classroom teaching and the contextual supports that help teachers surmount these obstacles. Lessons learned from understanding the factors that impact the effects of PD will help educators design PD programs that maximize the translation of teacher learning into student learning. The project will recruit and support a cohort of teachers, grades 4–5 (n=40) and grades 6–7 (n=40) for three years to trace growth in teacher learning, changes in teaching practices, and increases in student learning. The PD will be provided throughout the year for three consecutive years. The researchers will focus on two mathematics topics with a third topic assessed to measure transfer effects. Several cycles of lesson analysis will occur each year, with small grade-alike curriculum-alike groups assisted by trained coaches to help teachers translate their growing analysis skills into planning, implementing, and reflecting on their own lessons. Additional days will be allocated each year to assist the larger groups of teachers in developing pedagogical content knowledge for analyzing teaching. The research focuses on the following questions: 1) What are the relationships between teacher learning from PD, classroom teaching, and student learning, how do hypothesized mediating variables affect these relationships, and how do these relationships change as teachers become more competent at analyzing teaching?; and 2) How do teachers describe the obstacles and supports they believe affect their learning and teaching, and how do these obstacles and supports deepen and broaden the implementation theory? Multi-level modeling will be used to address the first question, taking into account for the nested nature of the data, in order to test a model that hypothesizes direct and indirect relationships between teacher learning and teaching practice and, in turn, teaching practice and student learning. Teachers will take assessments each year, for each mathematics topic, on the analysis of teaching skills, on the use of teaching practices, and on students’ learning. Cluster analysis will be used to explore the extent to which the relationship between learning to analyze the mathematics of a lesson, teaching quality, and student achievement may be different for different teachers based on measured characteristics. Longitudinal analysis will be used to examine the theoretical relationships among variables in the hypothesized path model. Teachers’ mathematical knowledge for teaching, lesson planning, and textbook curricular material use will be examined as possible mediating variables between teacher learning and teaching practice. To address the second research question, participants will engage in annual interviews about the factors they are obstacles to doing this work and about the supports within and outside of the PD that ameliorate these obstacles. Quantitative analyses will test the relationships between the obstacles and supports with teacher learning and classroom teaching. Through qualitative analyses, the obstacles and supports to translating professional learning into practice will be further articulated. These obstacles and supports, along with the professional development model, will be disseminated to the field. The Discovery Research preK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.