Award Abstract # 1131201
RUI Collaborative Research: Spatial Realism in the Mussel Bed Disturbance Paradigm

NSF Org: OCE
Division Of Ocean Sciences
Recipient: UNIVERSITY CORP AT MONTEREY BAY
Initial Amendment Date: August 10, 2011
Latest Amendment Date: August 10, 2011
Award Number: 1131201
Award Instrument: Standard Grant
Program Manager: David Garrison
OCE
 Division Of Ocean Sciences
GEO
 Directorate For Geosciences
Start Date: August 15, 2011
End Date: July 31, 2016 (Estimated)
Total Intended Award Amount: $48,252.00
Total Awarded Amount to Date: $48,252.00
Funds Obligated to Date: FY 2011 = $48,252.00
History of Investigator:
  • Corey Garza (Principal Investigator)
    cgarza2@uw.edu
Recipient Sponsored Research Office: University Corporation at Monterey Bay
100 CAMPUS CTR
SEASIDE
CA  US  93955-8000
(831)582-3089
Sponsor Congressional District: 19
Primary Place of Performance: California State University Monterey Bay Foundation
100 Campus Center
Seaside
CA  US  93955-8001
Primary Place of Performance
Congressional District:
19
Unique Entity Identifier (UEI): EDSUH7KMJE91
Parent UEI: EDSUH7KMJE91
NSF Program(s): BIOLOGICAL OCEANOGRAPHY
Primary Program Source: 01001112DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 0000, 9229
Program Element Code(s): 165000
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.050

ABSTRACT

Our understanding of how physical disturbance shapes the structure of populations and communities owes much to field studies of wave-generated gap formation in mussel beds. Prior studies depict mussel beds as a non-equilibrium system, in which disturbance is spatially unpredictable, generating a random patchwork of mussel cover and gaps. This project will test assumptions and predictions of an alternative view -- that disturbance shows predictable landscape patterns that depend not merely on spatial distribution of external forcing (wave stress) but also on biological processes determining the structure of the aggregation. Specifically, spatially varying mussel productivity (recruitment and growth), physiological stress, and predation interact to produce landscape patterns in the structure of the mussel cover. Certain regions of the mussel bed develop as mono-layers attached directly to the rock, resisting disturbance. Other regions develop in multi-layered configurations that when very deep force superficial mussels to attach solely to adjacent mussels instead of the rock surface, and cause interior mussels to only weakly attach to either rock or one another, favoring propagating disturbances. Therefore, spatial patterns of gap formation and recovery emerge from a unified landscape process.

Field work for this project emphasizes construction of a detailed GIS database using some innovative sampling methods applied to >10 mussel bed sites in Barkley Sound, British Columbia. GIS data layers for each site include wave force, topography (tidal height, slope, and aspect), mussel size structure, mussel bed thickness, differentiation of layering, and size-specific attachment strengths stratified by layer. GIS interpolations and regression analyses will be used to first examine assumptions of the hypothetical landscape process and then test specific predictions regarding spatial patterns in the occurrence of disturbance and recovery. Finally, controlled field experiments will test the key proposition that different mussel bed structures cause different resistance to-, extent of-, and recovery from disturbance.

Intellectual Merit: The landscape disturbance hypothesis includes several processes that differ from previous conceptualizations of disturbance in this system: steady state (equilibrium) structures influence the likelihood that hydrodynamic stresses initiate a disturbance and whether once initiated the disturbance will propagate. Thus, equilibrium processes condition essential features of the disturbance process. Disturbance is predictable within probabilistic limits, and the landscape patterns of disturbance reflect in considerable measure the biological characteristics of a foundation species. This reframing of the disturbance paradigm may apply to a diverse array of layered ecosystems subject to perturbations (e.g. biofilms, coral reefs, forests).

Broader Impacts: The project forms an alliance among a Minority Serving Institution (Cal State LA), a comprehensive university with a unique center for marine spatial analysis (Cal State Monterey Bay) and a Tier 1 Research Institution (UCLA). The partners have considerable mentoring and outreach support systems to draw upon. The project creates a co- mentoring program for Cal State LA students, providing an intensive introduction to spatial analysis of marine ecosystems, an unmatched field research experience, and exposure to research labs of a PhD granting institution, including potential PhD advisors. Numerous educational enrichment and training activities are planned for the three campuses and the field venue, Bamfield Marine Sciences Centre. The project will broaden participation of underrepresented minorities in biological oceanography on the West Coast, and provide a unique resource in that regard. Additional outreach to the public and K-12 teachers will be done through COSEE-West.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page