Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Awardee:UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH
Doing Business As Name:University Corporation For Atmospheric Res
PD/PI:
  • Matthew Long
  • (303) 497-1000
  • mclong@ucar.edu
Award Date:07/26/2017
Estimated Total Award Amount: $ 401,453
Funds Obligated to Date: $ 478,529
  • FY 2020=$77,076
  • FY 2017=$401,453
Start Date:08/01/2017
End Date:07/31/2021
Transaction Type:Grant
Agency:NSF
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.050
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:Collaborative Research: Biogeochemical and physical conditioning of Sub-Antarctic Mode Water in the Southern Ocean
Federal Award ID Number:1735846
DUNS ID:078339587
Parent DUNS ID:078339587
Program:Chemical Oceanography
Program Officer:
  • Henrietta Edmonds
  • (703) 292-7427
  • hedmonds@nsf.gov

Awardee Location

Street:3090 Center Green Drive
City:Boulder
State:CO
ZIP:80301-2252
County:Boulder
Country:US
Awardee Cong. District:02

Primary Place of Performance

Organization Name:National Center for Atmospheric Research
Street:3090 Center Green Drive
City:Boulder
State:CO
ZIP:80301-2252
County:Boulder
Country:US
Cong. District:02

Abstract at Time of Award

Cold surface water in the southern Indian Ocean sinks to about 500 meters and travels in the dark for thousands of miles before it resurfaces some 40 years later near the equator in the other ocean basins. This major water mass is named the Sub-Antarctic Mode Water (SAMW). Nutrients it contains when it warms and rises into the sunlit subtropical and tropical waters are estimated to fuel up to 75% of the microscopic plant growth there. Before it sinks, the chemical properties of the SAMW are modified by the growth and distinct physiology of two common phytoplankton; diatoms with shells made of silica, and coccolithophores with carbonate shells. Local physical dynamics influence where and how fast these two phytoplankton classes grow. Consequently, differing nutrient and trace chemical fingerprints are established at the point of SAMW formation. This project is an exceptionally detailed field and modeling effort that will document and quantify the remarkable, interconnected processes that chemically connect two important oceanic ecosystems half a world apart. The scientists leading the project will study the complexity of the biological and chemical conditioning of the SAMW and thus provide critical data about the large-scale oceanic controls of the biological carbon pump that removes atmospheric carbon dioxide to the deep ocean over millennial timescales. Scientific impact from this project will stem from significant peer-reviewed publications and improved predictive models. Societal benefits will develop from training of a range of scholars, including high school, undergraduate, and graduate students, as well as technical and post-doctoral participants. A high school teacher and science communication specialist will go to sea with the project and share experiences from the ship with students on shore via social media and scheduled web interactions. To examine how SAMW formation and subduction controls the productivity of global waters well to the north, two January expeditions to the SE Indian Ocean will identify, track, and study the unique mesoscale eddies that serve as discrete water parcels supporting rich populations of either coccolithophores or diatoms plus their associated microbial communities. The eddies will be tracked with Lagrangian Argo drifters and observations will be made of exactly how SAMW is chemically conditioned (i.e. Si, N, P, Fe, and carbonate chemistry) over time scales of months. Using data obtained on the feedback between ecological processes and nutrient, trace metal, and carbonate chemistry in these eddies and on related transect cruises, the project will have three main goals: (1) determine the rates at which SAMW coccolithophores and diatoms condition the carbonate chemistry plus nutrient and trace metal concentrations, as well as assess taxonomic and physiological diversity in the study area with traditional methods plus next-generation sequence DNA/RNA profiling, (2) explore growth limitations by iron, silicate and/or nitrate in controlling algal assemblages and genetic diversity, and (3) combine these findings with the Ekman- and eddy-driven subduction of SAMW to examine biogeochemical impact on a basin scale, using both observations and global numerical models. A meridional survey from 30 to 60 degrees south latitude will be used to characterize the larger-scale variability of carbonate chemistry, nutrient distributions, productivity, genetics and biomass of various plankton groups as SAMW is subducted and proceeds northward.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.