Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Awardee:UNIVERSITY OF CHICAGO, THE
Doing Business As Name:University of Chicago
PD/PI:
  • Maureen L Coleman
  • (773) 702-2455
  • mlcoleman@uchicago.edu
Co-PD(s)/co-PI(s):
  • Jacob Waldbauer
Award Date:08/20/2018
Estimated Total Award Amount: $ 698,196
Funds Obligated to Date: $ 698,196
  • FY 2018=$698,196
Start Date:09/01/2018
End Date:08/31/2021
Transaction Type:Grant
Agency:NSF
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.050
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:Collaborative Research: Teasing apart coexisting cyanobacteria in the Laurentian Great Lakes
Federal Award ID Number:1830011
DUNS ID:005421136
Parent DUNS ID:005421136
Program:BIOLOGICAL OCEANOGRAPHY
Program Officer:
  • Daniel J. Thornhill
  • (703) 292-8143
  • dthornhi@nsf.gov

Awardee Location

Street:6054 South Drexel Avenue
City:Chicago
State:IL
ZIP:60637-2612
County:Chicago
Country:US
Awardee Cong. District:01

Primary Place of Performance

Organization Name:University of Chicago
Street:5734 South Ellis Avenue
City:Chicago
State:IL
ZIP:60637-5418
County:Chicago
Country:US
Cong. District:01

Abstract at Time of Award

The Laurentian Great Lakes hold 20% of our planet's surface freshwater and 84% of US surface freshwater, comprising the largest freshwater ecosystem on Earth. They provide critical ecosystem services such as fisheries and recreation, and serve as the drinking water source to 40 million people. In recent decades, the Great Lakes have experienced significant environmental changes, such as nutrient pollution and invasive species, that have altered water chemistry and food web structure. In particular, the base of the food web has changed dramatically. Annual spring phytoplankton blooms have largely disappeared in Lakes Michigan and Huron, while toxic cyanobacterial blooms have increased in Lake Erie. The microorganisms that make up the base of the food web in the Great Lakes are poorly understood and play critical roles in regulating water quality and ecosystem productivity. This project characterizes single-celled cyanobacteria across the Laurentian Great Lakes to understand their genetic diversity and ecology. The investigators are working with local high schools on Chicago's south side to develop teaching modules about the role of microorganisms in the health of the Great Lakes. Local high school teachers will be engaged to design lessons about aquatic microbial ecology, with the goal of increasing Great Lakes literacy and STEM participation in Chicago's impoverished and diverse south side communities. Picocyanobacteria contribute up to 50% of primary production in some portions of the Laurentian Great Lakes. However, little is known about their population structure and dynamics, or about factors shaping their abundance and activity. Understanding controls on picocyanobacterial diversity and function is crucial for developing predictive biogeochemical models for the Great Lakes in the face of rapid environmental change. Multiple phylogenetic groups of coexisting picocyanobacteria in the Great Lakes have recently been identified, and this project characterizes their genetic, physiological, and ecological diversity. Using a combination of flow cytometry and molecular sequencing approaches, distinct populations are being quantified across lakes, depths, and seasons, and comparative genomics is being used to reveal how pathways and genes are distributed across taxa and habitats. Quantitative transcriptomics and proteomics are being used to diagnose environmental controls on gene expression and to assess the relative activity of distinct populations. Ongoing time series data and archived samples are being combined with targeted sampling aboard the R/V Blue Heron. This project advances our knowledge of the Great Lakes microbial food web by generating the first systematic picture of picocyanobacterial diversity in this ecosystem. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Publications Produced as a Result of this Research

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

Paver, Sara F. and Newton, Ryan J. and Coleman, Maureen L. "Microbial communities of the Laurentian Great Lakes reflect connectivity and local biogeochemistry" Environmental Microbiology, v.22, 2019, p.. doi:10.1111/1462-2920.14862 Citation details  

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.