Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Doing Business As Name:Occidental College
  • Shana K Goffredi
  • (323) 259-1470
Award Date:02/25/2021
Estimated Total Award Amount: $ 128,827
Funds Obligated to Date: $ 44,342
  • FY 2021=$44,342
Start Date:10/01/2021
End Date:09/30/2024
Transaction Type:Grant
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.050
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:Collaborative Research: Redefining the footprint of deep ocean methane seepage for benthic ecosystems
Federal Award ID Number:2048481
DUNS ID:046436051
Parent DUNS ID:046436051
Program Officer:
  • Cynthia Suchman
  • (703) 292-2092

Awardee Location

Street:1600 Campus Road
City:Los Angeles
County:Los Angeles
Awardee Cong. District:34

Primary Place of Performance

Organization Name:Occidental College
County:Los Angeles
Cong. District:34

Abstract at Time of Award

This research examines the role of deep-sea organisms in determining the fate and footprint of methane, a potent greenhouse gas, on Pacific continental margins. The investigators are evaluating the deep ocean methanosphere defined by the microbial communities that consume methane and the animals that directly feed on or form symbioses with methane-consuming microbes. They are also investigating animal communities that gain energy indirectly from methane, as well as those that take advantage of carbonate rocks, the physical manifestation of methane consumption in seafloor sediments. The study of methane seeps in the deep waters of both Alaska (4400-5500 meters) and Southern California (450-1040 meters) is enabling comparisons of the methanosphere under different food-limitation and oxygen regimes. By applying diverse chemical, isotopic, microscopy, and genetic-based analyses to seep microbes and fauna, this study is advancing understanding of the contribution of methane to deep-sea biodiversity and ecosystem function, information that can inform management and conservation actions in US waters. In addition to training for graduate and undergraduate students at their home institutions, the investigators are collaborating with the Alaska Native Science and Engineering Program (ANSEP). They are recruiting Alaskan undergraduates to participate in the research, contributing to ANSEP’s online resources that promote interaction between scientists and middle and high school students, and participating in ANSEP’s annual residential Career Exploration in Marine Science programs to engage middle school students in learning about deep-sea ecosystems and the variety of career pathways available in marine related fields. Microbial production and consumption of methane is dynamic and widespread along continental margins, and some animals within deep-sea methane seeps rely on the oxidation and sequestration of methane for nutrition. At the same time, understanding of methane-dependent processes and symbioses in the deep-sea environment is still rudimentary. The goals of this study are to 1) examine the diversity of animals involved in methane-based symbioses and heterotrophic consumption of methane-oxidizing microbes and how these symbioses extend the periphery of seeps, contributing to non-seep, continental slope food webs; and 2) determine whether carbonates on the seep periphery sustain active methanotrophic microbial assemblages, providing a localized food source or chemical fuel for thiotrophic symbioses, via anaerobic oxidation of methane, or free-living, sulfide-oxidizing bacteria consumed by animals. The investigators are addressing these goals by surveying, sampling, and characterizing microbes, water, sediments, carbonates and animals at a deep seep site on the Aleutian Margin and a shallow site off Southern California. Shipboard experiments and laboratory analyses are using molecular, isotopic, geochemical, and radiotracer tools to understand transfer of methane-sourced carbon from aerobic methanotrophs under multiple oxygen levels, pressures, and photosynthetic food inputs. This approach offers a wide lens by which to examine the methane seep footprint, allow reinterpretation of past observations, and identify new scientific areas for future study. Improved characterization of the deep continental margin methanosphere informs climate science, biodiversity conservation, and resource management. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.