Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Awardee:UNIVERSITY OF WASHINGTON
Doing Business As Name:University of Washington
PD/PI:
  • Karen I Goldberg
  • (215) 573-6756
  • kig@sas.upenn.edu
Award Date:09/11/2012
Estimated Total Award Amount: $ 20,000,000
Funds Obligated to Date: $ 20,416,566
  • FY 2015=$289,282
  • FY 2012=$8,000,000
  • FY 2014=$8,127,284
  • FY 2016=$4,000,000
Start Date:09/15/2012
End Date:08/31/2018
Transaction Type: Cooperative Agreements
Agency:NSF
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.049
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:Center for Enabling New Technologies through Catalysis (CENTC) Phase II Renewal
Federal Award ID Number:1205189
DUNS ID:605799469
Parent DUNS ID:042803536
Program:CHE CENTERS
Program Officer:
  • Katharine Covert
  • (703) 292-4950
  • kcovert@nsf.gov

Awardee Location

Street:4333 Brooklyn Ave NE
City:Seattle
State:WA
ZIP:98195-0001
County:Seattle
Country:US
Awardee Cong. District:07

Primary Place of Performance

Organization Name:University of Washington
Street:4333 Brooklyn Ave NE
City:Seattle
State:WA
ZIP:98195-1700
County:Seattle
Country:US
Cong. District:07

Abstract at Time of Award

The Center for Enabling New Technologies Through Catalysis, or CENTC, brings together a group of 18 investigators and their students in chemistry and chemical engineering at 14 different institutions across North America. The focus of this team is to develop fundamental science needed for the sustainable production of chemicals and fuels. CENTC scientists will create and investigate new reactions and catalyst systems for the selective cleavage and formation of C-H, C-C, C-O, O-O and O-H bonds. The information gained will be exploited to devise new methodologies for the chemical industry that are efficient, inexpensive and environmentally benign. A broad scope of projects is being pursued in CENTC including direct alkane functionalization, selective defunctionalization of biomass, utilization of carbon dioxide as a feedstock chemical, and the oxidation of water. CENTC offers a collaborative training environment for students and postdoctoral researchers, and includes education in innovation integrated throughout many activities. The center has an industrial affiliates program that allows for direct communication of CENTC research results to industry where they can be developed for commercial use. Center research is focused on the basic science that will underpin a range of new technologies for sustainable production of chemicals, pharmaceuticals and fuels and thus have significant potential to increase US competitiveness and to enhance our national security through an increase in energy independence. The Center for Enabling New Technologies Through Catalysis is led by the University of Washington and is funded as part of the Centers for Chemical Innovation (CCI) program.

Publications Produced as a Result of this Research

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

Frasco, D. A.; Lilly, C. P.; Boyle, P. D.; Ison, E. A. "Cp*Ir(III)-Catalyzed Oxidative Coupling of Benzoic Acid with Alkynes" ACS Catalysis, v.3, 2013, p.2421. doi:http://dx.doi.org/10.1021/cs400656q 

Goldberg, J. M.; Cherry, S. D. T.; Guard, L. M.; Kaminsky, W.; Goldberg, K. I.; Heinekey, D. M. "Hydrogen Addition to (pincer)IrI(CO) Complexes: The Importance of Steric and Electronic Factors" Organometallic, v.35, 2016, p.3546. doi:10.1021/acs.organomet.6b00598 

Liu, Y.; Mellmer, M. A.; Alonso, D. M.; Dumesic, J. A. "Effects of Water on the Copper-Catalyzed Conversion of Hydroxymethylfurfural in Tetrahydrofuran" ChemSusChem, v.8, 2015, p.3983. doi:10.1002/cssc.201501122 

Fujita, E.; Goldman, A. S. "Preface for Small-Molecule Activation: Carbon-Containing Fuels" Inorg. Chem., v.54, 2015, p.5040. doi:10.1021/acs.inorgchem.5b00790 

Yuan, H.; Brennessel, W. W.; Jones, W. D. "Effect of Carboxylate Ligands on Alkane Dehydrogenation with (dmPhebox)Ir Complexes" ACS Catal., v.8, 2018, p.10.1021/a. doi:10.1021/acscatal.7b04057 

Goldberg, J. M.; Berman, J. L.; Kaminsky, W.; Goldberg, K. I.; Heinekey, D. M. "Oxidative addition of iodine to (tBu)4(POCOP)Ir(CO) complexes" J. Organomet. Chem, v.845, 2017, p.171. doi:10.1016/j.jorganchem.2017.04.036 

Gao, Y.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. "Selective Dehydrogenative Coupling of Ethylene to Butadiene via an Iridacyclopentane Complex" J. Am. Chem. Soc., v.140, 2018, p.2260. doi:10.1021/jacs.7b11689 

Eriksen, D.; Lian, J.; Zhao, H. "Protein Design for Pathway Engineering" J. Struct. Biol., v.185, 2014, p.234. doi:http://dx.doi.org/10.1016/j.jsb.2013.03.011 

Frasco, D. A.; Sommer, R. D.; Ison, E. A. "ortho-C?H Activation of Thiobenzoic Acid: Synthesis, Characterization, and Reactivity of Iridium Thiobenzoate Complexes" Organometallics, v.34, 2015, p.275. doi:10.1021/om501115u 

Chakraborty, S.; Piszel, P.; Brennessel, W. W.; Jones, W. D. "A Single Nickel Catalyst for the Acceptorless Dehydrogenation of Alcohols and Hydrogenation of Carbonyl Compounds" Organometallics, v.34, 2015, p.5203. doi:10.1021/acs.organomet.5b00824 

Kulkarni, N. V.; Brennessel, W. W.; Jones, W. D. "Catalytic Upgrading of Ethanol to n-Butanol via Manganese-Mediated Guerbet Reaction" ACS Catal., v.8, 2018, p.997. doi:10.1021/acscatal.7b03653 

Gladysz, J. A.; Bedford, R. B.; Fujita, M.; Gabbai, F. P.; Goldberg, K. I.; Holland, P. L.; Kiplinger, J. L.; Krische, M. J.; Louie, J.; Lu, C. C.; Norton, J. R.; Petrukhina, M. A.; Ren, T.; Stahl, S. S.; Tiller, T. D.; Webster, C. E.; White, M. C.; White "Organometallics Roundtable 2013-2014" Organometallics, v.33, 2014, p.1505. doi:http://dx.doi.org/10.1021/om500253z 

Bruch, Q. J.; Lindley, B. M.; Askevold, B.; Schneider, S.; Miller, A. J. M. "A Ruthenium Hydrido Dinitrogen Core Conserved across Multielectron/Multiproton Changes to the Pincer Ligand Backbone" Inorg. Chem., v.57, 2018, p.1964. doi:10.1021/acs.inorgchem.7b02889 

Bolig, A. D.; Lyons, T. W.; DiSalvo, D. T.; Brookhart, M. "Intramolecular Hydrogen Transfer Reactions Catalyzed by Pentamethylcyclopentadienyl Rhodium and Cobalt Olefin Complexes: Mechanistic Studies" Polyhedron, v.103, 2016, p.51. doi:10.1016/j.poly.2015.07.076 

Goldberg, K. I.; Goldman, A. S. "Large-Scale Selective Functionalization of Alkanes" Acc. Chem. Res, v.50, 2017, p.620. doi:10.1021/acs.accounts.6b00621 

Goldberg, J. M.; Wong, G. W.; Brastow, K. E.; Kaminsky, W.; Goldberg, K. I.; Heinekey, D. M. "The Importance of Steric Factors in Iridium Pincer Complexes" Organometallics, v.34, 2015, p.753. doi:10.1021/om501166w 

Gruhn, N. E.; Brookhart, M.; Goldberg, K. I. "Virtual Issue on Research in the Center for Enabling New Technologies Through Catalysis (CENTC)" ACS Catalysis, v.4, 2014, p.1318. doi:http://dx.doi.org/10.1021/cs500312z 

Wang, D. Y.; Choliy, Y.; Haibach, M. C.; Hartwig, J. F.; Krogh-Jespersen, K.; Goldman, A. S. "Assessment of the Electronic Factors Determining the Thermodynamics of ?Oxidative Addition? of C-H and N-H Bonds to Ir(I) Complexes" J. Am. Chem. Soc., v.138, 2016, p.149. doi:10.1021/jacs.5b09522 

Wilklow-Marnell, M.; Brennessel, W. W.; Jones, W. D. "Reactivity of iPrPCPIrH4 with para-benzoquinones" Polyhedron, v.143, 2018, p.209. doi:10.1016/j.poly.2017.10.026 

Huang, H.; Denard, C. A.; Alamillo, R.; Crisci, A. J.; Miao, Y.; Dumesic, J. A.; Scott, S. L.; Zhao, H. "Tandem Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural with an Immobilized Enzyme and a Solid Acid" ACS Catal., v.4, 2014, p.2165. doi:10.1021/cs500591f 

Gao, Y.; Guan, C.; Zhou, M.; Kumar, A.; Emge, T. J.; Wright, A. M.; Goldberg, K. I.; Krogh-Jespersen, K.; Goldman, A. S. "?-Hydride Elimination and C-H Activation by an Iridium Acetate Complex, Catalyzed by Lewis Acids. Alkane Dehydrogenation Co-Catalyzed by Lewis Acids and (Phebox)Ir" J. Am. Chem. Soc, v.139, 2017, p.6338. doi:10.1021/jacs.6b12995 

Alamillo, R.; Crisci, A. J.; Gallo, J. M. R.; Scott, S. L.; Dumesic, J. A. "A Tailored Microenvironment for Catalytic Biomass Conversion in Inorganic-Organic Nanoreactors" Angew. Chem., v.52, 2013, p.10349. doi:http://dx.doi.org/10.1002/anie.201304693 

Chen, Y.; Choi, S.; Thompson, L. T. "Ethyl Formate Hydrogenolysis over Mo2C-Based Catalysts: Towards Methanol Synthesis from CO/CO2 Hydrogenation" Catal. Today, v.259, 2015, p.285. doi:10.1016/j.cattod.2015.08.021 

Allen, K. E.; Heinekey, D. M; Goldman, A. S.; Goldberg, K. I. "Regeneration of an Ir(III) complex Active for Alkane Dehydrogenation Using Molecular Oxygen" Organometallics, v.33, 2014, p.1337. doi:http://dx.doi.org/10.1021/om401241e 

Wyvratt, B. M.; Gaudet, J. R.; Thompson, L. T. "Effects of Passivation on Synthesis, Structure and Composition of Molybdenum Carbide Supported Platinum Water-Gas Shift Catalysts" J. Catal., v.330, 2015, p.280. doi:10.1016/j.jcat.2015.07.023 

Campos, Jesus; Kundu, Sabuj; Pahls, Dale R.; Brookhart, Maurice; Carmona, Ernesto; Cundari, Thomas R. "Mechanism of Hydrogenolysis of an Iridium-Methyl Bond: Evidence for a Methane Complex Intermediate" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.135, 2013, p.1217-1220.

Kumar, A.; Emge, T. J.; Zhuo, G.; Mironov, O.; Saxton, R. J.; Goldman, A. S. "Dehydrogenation of n-Alkanes by Solid-Phase Molecular Pincer-Iridium Catalysts. High Yields of ?-Olefin Product" J. Am. Chem. Soc., v.137, 2015, p.9894. doi:10.1021/jacs.5b05313 

Fazlur Rahman, A. K.; Wilklow-Marnell, M.; Brennessel, W. W.; Jones, W. D. "Crystal Structure of Chloridobis[(1,2,5,6-?)-cycloocta-1,5-diene]iridium(I)" Acta Cryst. E, v.73, 2017, p.273. doi:10.1107/S2056989017000809 

Miller, Alexander J. M.; Heinekey, D. Michael; Mayer, James M.; Goldberg, Karen I. "Catalytic Disproportionation of Formic Acid to Generate Methanol" ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, v.52, 2013, p.3981-3984.

Cook, A. K.; Emmert, M. H.; Sanford, M. S. "Steric Control of Site Selectivity in the Pd-Catalyzed C?H Acetoxylation of Simple Arenes" Org. Lett., v.15, 2013, p.5428. doi:http://dx.doi.org/10.1021/ol4024248 

Tucker, Mark H.; Alamillo, Ricardo; Crisci, Anthony J.; Gonzalez, Gretchen M.; Scott, Susannah L.; Dumesic, James A. "Sustainable Solvent Systems for Use in Tandem Carbohydrate Dehydration Hydrogenation" ACS SUSTAINABLE CHEMISTRY & ENGINEERING, v.1, 2013, p.554-560.

Brewster, T. P.; Ou, W. C.; Tran, J. C.; Goldberg, K. I.; Hanson, S. K.; Cundari, T. R.; Heinekey, D. M. "Iridium, Rhodium, and Ruthenium Catalysts for the ?Aldehyde-Water Shift? Reaction" ACS Catal., v.4, 2015, p.3034. doi:10.1021/cs500843a 

Wilklow-Marnell, M.; Brennessel, W. W.; Jones, W. D. "C(sp2)-F Oxidative Addition of Fluorinated Aryl Ketones by iPrPCPIr" Organometallics, v.36, 2017, p.3125. doi:10.1021/acs.organomet.7b00466 

Cook, A. K.; Sanford, M. S. "Mechanism of the Palladium-Catalyzed Arene C-H Acetoxylation: A Comparison of Catalysts and Ligand Effects" J. Am. Chem. Soc., v.137, 2015, p.3109. doi:10.1021/jacs.5b00238 

Hanson, S. K.; Baker, R. T. "Knocking on Wood: Base Metal Complexes as Catalysts for Selective Oxidation of Lignin Models and Extracts" Acc. Chem. Res., v.48, 2015, p.2037. doi:10.1021/acs.accounts.5b00104 

Connor, G. P.; Holland, P. L. "Coordination Chemistry Insights into the Role of Alkali Metal Promoters in Dinitrogen Reduction" Catalysis Today, v.286, 2017, p.21. doi:10.1016/j.cattod.2016.08.014 

Kumar, A.; Bhatti, T.; Goldman, A. "Dehydrogenation of Alkanes and Aliphatic Groups by Pincer-Ligated Metal Complexes" Chem. Rev., v.117, 2017, p.12357. doi:10.1021/acs.chemrev.7b00247 

Brereton, K. R.; Pitman, C. L.; Cundari, T. R.; Miller, A. J. M. "Solvent-Dependent Thermochemistry of an Iridium/Ruthenium H2 Evolution Catalyst" Inorg. Chem, v.55, 2016, p.12042. doi:10.1021/acs.inorgchem.6b02223 

Cheng, C.; Kim, B. G.; Guironnet, D.; Brookhart, M.; Guan, C.; Wang, D. Y.; Krogh-Jespersen, K.; Goldman, A. S. "Synthesis and Characterization of Carbazolide-based Iridium PNP Pincer Complexes. Mechanistic and Computational Investigation of Alkene Hydrogenation: Evidence for an Ir(III)/Ir(V)/Ir(III) Catalytic Cycle" J. Am. Chem. Soc., v.136, 2014, p.6672. doi:http://dx.doi.org/10.1021/ja501572g 

Bezier, D.; Brookhart, M. "Applications of PC(sp3)P Iridium Complexes in Transfer Dehydrogenation of Alkanes" ACS Catal., v.4, 2014, p.3411. doi:10.1021/cs500892p 

Kovach, J.; Brennessel, W. W.; Jones, W. J. "Electrophilic C-H Activation of Benzene with a Shilov-inspired Rhodium(III) Diimine Complex" J. Organomet. Chem., v.793, 2015, p.192. doi:10.1016/j.jorganchem.2015.05.005 

Brewster, T. P.; Miller, A. J. M.; Heinekey, D. M.; Goldberg, K. I. "Hydrogenation of Carboxylic Acids Catalyzed by Half-Sandwich Complexes of Iridium and Rhodium" J. Am. Chem. Soc., v.135, 2013, p.16022. doi:http://dx.doi.org/10.1021/ja408149n 

Allen, Kate E.; Heinekey, D. Michael; Goldman, Alan S.; Goldberg, Karen I. "Alkane Dehydrogenation by C-H Activation at Iridium(III)" ORGANOMETALLICS, v.32, 2013, p.1579-1582.

Goldberg, J. M.; Goldberg, K. I.; Heinekey, D. M.; Burgess, S. A.; Lao, D. B.; Linehan, J. C. "Detection of an Iridium?Dihydrogen Complex: A Proposed Intermediate in Ionic Hydrogenation" J. Am. Chem. Soc., v.139, 2017, p.12638. doi:10.1021/jacs.7b06480 

Brereton, K. R.; Bellows, S. M.; Fallah, H.; Lopez, A. A.; Adams, R. M.; Miller, A. J. M.; Jones, W. D.; Cundari, T. R. "Aqueous Hydricity from Calculations of Reduction Potential and Acidity in Water" J. Phys. Chem. B., v.120, 2016, p.12911. doi:10.1021/acs.jpcb.6b09864 

Kumar, A.; Hackenberg, J. D.; Zhou, G. Steffens, A. M.; Mironov, O.; Saxton, R. J.; Goldman, A. S. "High Yields of Piperylene in the Transfer Dehydrogenation of Pentane Catalyzed by Pincer-ligated Iridium Complexes" J. Mol. Catal. A, v.426, 2017, p.368. doi:10.1016/j.molcata.2016.10.019 

Wilklow-Marnell, M.; Jones, W. D. "Catalytic Oxidation of Carbon Monoxide by ?-Alumina Supported 3 nm Cerium Dioxide Nanoparticles" Mol. Catal., v.439, 2017, p.9. doi:10.1016/j.mcat.2017.06.015 

Meredith, Joseph M.; Goldberg, Karen I.; Kaminsky, Werner; Heinekey, D. Michael "eta(6)-Tetramethylfulvene and mu-eta(3):eta(3)-Benzene Complexes of Iridium" ORGANOMETALLICS, v.31, 2012, p.8459-8462.

Bellows, S. M.; Cundari, T. R.; Jones, W. D. "Methane is the Best Substrate for (sp3)C-H Activation with Cp*(PMe3)Co(Me)(OTf): A Density Functional Theory Study" Organometallics, v.34, 2015, p.4032. doi:10.1021/acs.organomet.5b00452 

Arnold, P. L.; Stevens, C. J.; Bell, N. L.; Lord, R. M.; Goldberg, J. M.; Nichol, G. S.; Love, J. B. "Multi-electron reduction of sulfur and carbon disulfide using binuclear uranium(III) borohydride complexes" Chem. Sci, v.8, 2017, p.3609. doi:10.1039/C7SC00382J 

Barrett, S. M.; Pitman, C. L.; Walden, A. G.; Miller, A. J. M. "Photoswitchable Hydride Transfer from Iridium to 1-Methylnicotinamide Rationalized by Thermochemical Cycles" J. Am. Chem. Soc., v.136, 2014, p.14718. doi:10.1021/ja508762g 

Huff, C. A.; Sanford, M. S. "Catalytic CO2 Hydrogenation to Formate by a Ruthenium Pincer Complex" ACS Catalysis, v.3, 2013, p.2412. doi:http://dx.doi.org/10.1021/cs400609u 

Peacock, D. M.; Jiang, Q.; Hanley, P. S.; Cundari, T. R.; Hartwig, J. F. "Reductive Elimination from Phosphine-Ligated Alkylpalladium(II) Amido Complexes To Form sp3 Carbon?Nitrogen Bonds" J. Am. Chem. Soc., v.140, 2018, p.4893. doi:10.1021/jacs.8b00928 

Lindley, B. M.; Appel, A. M.; Krogh-Jespersen, K.; Mayer, M. J.; Miller, A. J. M. "Evaluating the Thermodynamics of Electrocatalytic N2 Reduction in Acetonitrile" ACS Energy Lett., v.1, 2016, p.698. doi:10.1021/acsenergylett.6b00319 

Kulkarni, A.; Kumar, A.; Goldman, A. S.; Celik, F. E. "Selectivity for Dimers in Pentene Oligomerization over Acid Zeolites" Catalysis Commun., v.75, 2016, p.98. doi:10.1016/j.catcom.2015.11.012 

Lindley, B. M.; Bruch, Q. J.; White, P. S.; Hasanayn, F.; Miller, A. J. M. "Ammonia Synthesis from a Pincer Ruthenium Nitride via Metal?Ligand Cooperative Proton-Coupled Electron Transfer" J. Am. Chem. Soc, v.139, 2017, p.5305. doi:10.1021/jacs.7b01323 

Sheludko, B.; Cunningham, M. T.; Goldman, A. S.; Celik, F. E. "Continuous-Flow Alkane Dehydrogenation by Supported Pincer-Ligated Iridium Catalysts at Elevated Temperatures" ACS Catal., v.8, 2018, p.7828. doi:10.1021/acscatal.8b01497 

Pitman, C. L.; Brereton, K. R.; Miller, A. J. M. "Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium" J. Am. Chem. Soc., v.138, 2016, p.2252. doi:10.1021/jacs.5b12363 

Jackson, D. H. K.; Wang, D.; Gallo, J. M. R.; Crisci, A. J.; Scott, S. L.; Dumesic, J. A.; Kuech, T. F. "Amine Catalyzed Atomic Layer Deposition of (3-Mercaptopropyl)trimethoxysilane for the Production of Heterogeneous Sulfonic Acid Catalysts" Chem. Mater., v.25, 2013, p.3844. doi:http://dx.doi.org/10.1021/cm401607g 

Jiao, Y.; Brennessel, W. W.; Jones, W. D. "Synthesis and energetics of Tp?Rh[P(OMe)3](R)H: A systematic investigation of ligand effects on C-H activation at rhodium" Chem. Sci., v.5, 2014, p.804. doi:http://dx.doi.org/10.1039/c3sc52748d 

Suarez, L. A.; Culakova, Z.; Balcells, D.; Bernskoetter, W. H.; Eisenstein, O.; Goldberg, K. I.; Hazari, N.; Tilset, M.; Nova, A. "The Key Role of the Hemiaminal Intermediate in the Iron-Catalyzed Deaminative Hydrogenation of Amides" ACS Catal., v.8, 2018, p.8751. doi:10.1021/acscatal.8b02184 

Lotz, M. D.; Camasso, N. M.; Canty, A. J.; Sanford, M. S. "Role of Silver Salts in Palladium-Catalyzed Arene and Heteroarene C?H Functionalization Reactions" Organometallics, v.36, 2017, p.165. doi:10.1021/acs.organomet.6b00437 

Bezier, D.; Guan, C.; Krogh-Jespersen, K.; Goldman, A. S.; Brookhart, M. "Experimental and Computational Study of Alkane Dehydrogenation Catalyzed by a Carbazolide-Based Rhodium PNP Pincer Complex" Chem. Sci., v.7, 2016, p.2579. doi:10.1039/C5SC04794C 

Haibach, M. C.; Wang, D. Y.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. "(POP)Rh pincer hydride complexes: unusual reactivity and selectivity in oxidative addition and olefin insertion reactions" Chem. Sci., v.4, 2013, p.3683-3692.

Lanci, M.P.; McKeown, B.A.; Lao, D.B.; Spettel, K.E.; Mayer, J.M. "One Electron Oxidation of (L)PdII(CH3)2 Complexes: Ligand Effects on Production of Ethane vs. Pd-C Bond Homolysis" Polyhedron, v.84, 2014, p.44. doi:10.1016/j.poly.2014.06.008 

Munjanja, L.; Torres-López, C.; Brennessel W. W.; Jones, W. D. "C?CN Bond Cleavage Using Palladium Supported by a Dippe Ligand" Organometallics, v.35, 2016, p.2010. doi:10.1021/acs.organomet.6b00304 

Lehman, M. C.; Boyle, P. D.; Sommer, R. D.; Ison, E. A. "Oxyfunctionalization with Cp*Ir(III)(NHC)(Me)L Complexes" J. Am. Chem. Soc., v.33, 2014, p.3411. doi:10.1021/om5007352 

Litman, Z. C.; Wang, Y.; Zhao, H.; Hartwig, J. F. "Cooperative Asymmetric Reactions Combining Photocatalysis and Enzymatic Catalysis" Nature, v.560, 2018, p.355. doi:10.1038/s41586-018-0413-7 

Gary, J. Brannon; Cook, Amanda K.; Sanford, Melanie S. "Palladium Catalysts Containing Pyridinium-Substituted Pyridine Ligands for the C-H Oxygenation of Benzene with K2S2O8" ACS CATALYSIS, v.3, 2013, p.700-703.

Lyons, T. W.; Brookhart, M. "Cobalt-Catalyzed Hydrosilation/Hydrogen-Transfer Cascade Reaction: A New Route to Silyl Enol Ethers" Chem. Eur. J., v.19, 2013, p.10124-101. doi:http://dx.doi.org/10.1002/chem.201301502 

Lao, D. B.; Owens, A. C. E.; Heinekey, D. M.; Goldberg, K. I. "Partial Deoxygenation of Glycerol Catalyzed by Iridium Pincer Complexes" ACS Catalysis, v.3, 2013, p.2391. doi:http://dx.doi.org/10.1021/cs400551g 

Peacock, D. M.; Jiang, Q.; Cundari, T. R.; Hartwig, J. F. "Reductive Elimination to Form C(sp3)-N Bonds from Palladium(II) Primary Alkyl Complexes" Organometallics, v.37, 2018, p.3243. doi:10.1021/acs.organomet.8b00617 

Lehman, M. C.; Pahls, D. R.; Meredith, J. M.; Sommer, R. D.; Heinekey, D. M.; Cundari, T. R.; Ison, E. A. "Oxyfunctionalization with Cp*IrIII(NHC)(Me)(Cl) with O2: Identification of a Rare Bimetallic IrIV µ-oxo Intermediate" J. Am. Chem. Soc., v.137, 2015, p.3574. doi:10.1021/ja512905t 

Peacock, D. M.; Roos, C. B.; Hartwig, J. F. "Palladium-Catalyzed Cross Coupling of Secondary and Tertiary Alkyl Bromides with a Nitrogen Nucleophile" ACS Cent. Sci, v.2, 2016, p.647. doi:10.1021/acscentsci.6b00187 

Xu, R.; Chakraborty, S.; Bellows, S. M.; Yuan, H.; Cundari, T. R.; Jones, W. D. "Iron-Catalyzed Homogeneous Hydrogenation of Alkenes under Mild Conditions by a Stepwise, Bifunctional Mechanism" ACS Catal., v.6, 2016, p.2127. doi:10.1021/acscatal.5b02674 

Lekich, T. T.; Gary, J. B.; Bellows, S. M.; Cundari, T. R.; Guard, L. M.; Heinekey, D. M. "H2 Addition to (Me4PCP)Ir(CO): Studies of the Isomerization Mechanism" Dalton Trans., v.47, 2018, p.4105. doi:10.1039/C8DT02861C 

Huff, C. A.; Kampf, J. W.; Sanford, M. S. "Reversible carbon-carbon bond formation between carbonyl compounds and a ruthenium pincer complex" Chem. Commun., v.49, 2013, p.7147-7149. doi:http://dx.doi.org/10.1039/c3cc43517b 

Lotz, M.D.; Remy, M.S.; Lao, D.B.; Ariafard, A.; Yates, B.F.; Canty, A.J.; Mayer, J.M.; Sanford, M.S. "Formation of Ethane from Mono-Methyl Palladium(II) Complexes" J. Am. Chem. Soc., v.136, 2014, p.8237. doi:10.1021/ja412338k 

Pitman, C. L.; Finster, O. N. L.; Miller, A. J. M. "Cyclopentadiene-Mediated Hydride Transfer from Rhodium Complexes" Chem. Commun., v.52, 2016, p.9105. doi:10.1039/C6CC00575F 

Wilklow-Marnell, M.; Brennessel, W. W.; Jones, W. D. "Unexpected Solvent Effects in the Isomerization of iPrPCPIr(?2-PhC?CPh) to a 1-Iridaindene" Isr. J. Chem., v.57, 2017, p.968. doi:10.1002/ijch.201700013 

Gallo, Jean Marcel R.; Alonso, David Martin; Mellmer, Max A.; Dumesic, James A. "Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents" GREEN CHEMISTRY, v.15, 2013, p.85-90.

Bellows, S. M.; Chakraborty, S.; Gary, J. B.; Jones, W. D.; Cundari, T. R. "An Uncanny Dehydrogenation Mechanism: Polar Bond Control over Stepwise or Concerted Transition States" Inorg. Chem., v.56, 2017, p.5519. doi:10.1021/acs.inorgchem.6b01800 

Kundu, S.; Lyons, T. W.; Brookhart, M. "Synthesis of Piperylene and Toluene via Transfer Dehydrogenation of Pentane and Pentene" ACS Catalysis, v.3, 2013, p.1768-1773. doi:http://dx.doi.org/10.1021/cs400398w 

Ou, W. C.; Cundari, T. R. "DFT Modeling of the Aldehyde-Water Shift Reaction with a Cationic Cp*Ir Catalyst" ACS Catal., v.5, 2015, p.225. doi:10.1021/cs501222m 

Lehman, M. C.; Gary, J. B.; Boyle, P. D.; Sanford, M. S.; Ison, E. A. "Effect of Solvent and Ancillary Ligands on the Catalytic H/D Exchange Reactivity of Cp*Ir(III)(L) Complexes" ACS Catalysis, v.3, 2013, p.2304. doi:http://dx.doi.org/10.1021/cs400420n 

Qi, L.; Alamillo, R.; Elliott, W. A.; Andersen, A.; Hoyt, D. W.; Walter, E. D.; Han, K. S.; Washton, N. M.; Rioux, R. M.; Dumesic, J. A.; Scott, S. L. "Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites" ACS Catal, v.7, 2017, p.3489. doi:10.1021/acscatal.7b01045 

Sues, P. E.; John, J. M.; Schrock, R. R.; Muller, P. "Molybdenum and Tungsten Alkylidene and Metallacyclobutane Complexes That Contain a Dianionic Biphenolate Pincer Ligand" Organometallics, v.35, 2016, p.758. doi:10.1021/acs.organomet.5b00976 

Miller, A. J. M.; Kaminsky, W.; Goldberg, K. I. "Arene Activation at Iridium Facilitates C?O Bond Cleavage of Aryl Ethers" Organometallics, v.33, 2014, p.1245. doi:http://dx.doi.org/10.1021/om5000166 

Cook, A. K.; Schimler, S. D.; Matzger, A. J.; Sanford, M. S. "Catalyst-controlled Selectivity in the C?H Borylation of Methane and Ethane" Science, v.351, 2016, p.1421. doi:10.1126/science.aad9289 

Rezayee, N. M.; Samblanet, D. C.; Sanford, M. S. "Iron-Catalyzed Hydrogenation of Amides to Alcohols and Amines" ACS Catal, v.6, 2016, p.6377. doi:10.1021/acscatal.6b01454 

Pahls, D. R.; Allen, K. E.; Goldberg, K. I.; Cundari, T. R. "Understanding the Effect of Ancillary Ligands on Concerted Metalation?Deprotonation by (dmPhebox)Ir(OAc)2(H2O) Complexes: A DFT Study" Organometallics, v.33, 2014, p.6413. doi:10.1021/om500752m 

Dobereiner, G. E.; Erdogan, G.; Larsen, C. R.; Grotjahn, D. B.; Schrock, R. R. "A One-Pot Tandem Olefin Isomerization/Metathesis-Coupling (ISOMET) Reaction" ACS Catal., v.4, 2014, p.3069. doi:10.1021/cs500889x 

Chakraborty, S.; Piszel, P. E.; Hayes, C. E.; Baker, R. T.; Jones, W. D. "Highly Selective Formation of n-Butanol from Ethanol through the Guerbet Process: A Tandem Catalytic Approach" J. Am. Chem. Soc., v.137, 2015, p.14264. doi:10.1021/jacs.5b10257 

Dobereiner, G. E.; Yuan, J.; Schrock, R. R.; Goldman, A. S.; Hackenberg, J. D. "Catalytic Synthesis of n-Alkyl Arenes through Alkyl Group Cross Metathesis" J. Am. Chem. Soc., v.135, 2013, p.12572. doi:http://dx.doi.org/10.1021/ja4066392 

Pitman, C. P.; Miller, A. J. M. "Molecular Photoelectrocatalysts for the Visible Light-Driven Evolution of Hydrogen from Neutral Water" ACS Catal., v.4, 2014, p.2727. doi:10.1021/cs500441f 

Brewster, T.P.; Rezayee, N.M.; Culakova, Z.; Sanford, M.S.; Goldberg, K.I. "Base Free Iridium-Catalyzed Hydrogenation of Esters and Lactones" ACS Catal., v.6, 2016, p.3113. doi:10.1021/acscatal.6b00263 

Stevens, T. E.; Smoll, K. A.; Goldberg, K. I. "Direct Formation of Carbon(sp3)?Heteroatom Bonds from RhIII To Produce Methyl Iodide, Thioethers, and Alkylamines" J. Am. Chem. Soc, v.139, 2017, p.7725. doi:10.1021/jacs.7b04169 

Rezayee, N. M.; Huff, C. A.; Sanford, M. S. "Tandem Amine and Ruthenium-Catalyzed Hydrogenation of CO2 to Methanol" J. Am. Chem. Soc., v.137, 2015, p.1028. doi:10.1021/ja511329m 

Nawara-Hultzsch, A. J.; Hackenberg, J. D.; Punji, B.; Supplee, C.; Emge, T. J.; Bailey, B. C.; Schrock, R. R.; Brookhart, M.; Goldman, A. S. "Rational Design of Highly Active ?Hybrid? Phosphine?Phosphinite Pincer Iridium Catalysts for Alkane Metathesis" ACS Catalysis, v.3, 2013, p.2505. doi:http://dx.doi.org/10.1021/cs400624c 

Dinh, L. V.; Li, B.; Kumar, A.; Schinski, W.; Field, K. D.; Kuperman, A.; Celik, F. E.; Goldman, A. S. "Alkyl-Aryl Coupling Catalyzed by Tandem Systems of Pincer-Ligated Iridium Complexes and Zeolites" ACS Catal., v.6, 2016, p.2836. doi:10.1021/acscatal.6b00149 

Sues, P. E.; John, J. M.; Bukhryakov, K. V.; Schrock, R. R.; Muller, P. "Molybdenum and Tungsten Alkylidene Complexes That Contain a 2-Pyridyl-Substituted Phenoxide Ligand" Organometallics, v.35, 2016, p.3587. doi:10.1021/acs.organomet.6b00644 

O'Neill, B. J.; Jackson, D. H. K.; Crisci, A. J.; Farberow, C. A.; Shi, F.; Alba-Rubio, A. C.; Lu, J.; Dietrich, P. J.; Gu, X.; Marshall, C. L.; Stair, P. C.; Elam, J. W.; Miller, J. T.; Ribeiro, F. H.; Voyles, P. M.; Greeley, J.; Mavrikakis, M.; Scott, S "Stabilization of Copper Catalysts for Liquid-Phase Reactions by Atomic Layer Deposition" Angew. Chem. Int. Ed. Eng., v.52, 2013, p.13808. doi:http://dx.doi.org/10.1002/anie.201308245 

Turlington, C. R.; Morris, J.; White, P. S.; Brennessel, W. W.; Jones, W. D.; Brookhart, M.; Templeton, J. L. "Exploring Oxidation of Half-Sandwich Rhodium Complexes: Oxygen Atom Insertion into the Rhodium?Carbon Bond of ?2-Coordinated 2-Phenylpyridine" Organometallics, v.33, 2014, p.4442. doi:10.1021/om500660n 

Walden, A. G.; Kumar, A.; Lease, N.; Goldman, A. S.; Miller, A. J. M. "Electrochemical and Chemical Routes to Hydride Loss from an Iridium Dihydride" Dalton Trans., v.45, 2016, p.9766. doi:10.1039/C6DT00522E 

Wang, Y.; Bartlett, M. J.; Denard, C. A.; Hartwig, J. F.; Zhao, H. "Combining Rh-Catalyzed Diazocoupling and Enzymatic Reduction To Efficiently Synthesize Enantioenriched 2-Substituted Succinate Derivatives" ACS Catal, v.7, 2017, p.2548. doi:10.1021/acscatal.7b00254 

Wang, Y.; Zhao, H. "Tandem Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis" Catalysts, v.6, 2016, p.194. doi:10.3390/catal6120194 

Zhou, M.; Johnson, S. I.; Gao, Y.; Emge, T. J.; Nielsen, R. J.; Goddard, W. A., III; Goldman, A. S. "Activation and Oxidation of Mesitylene C?H Bonds by (Phebox)Iridium(III) Complexes" Organometallics, v., 2015, p.2879. doi:10.1021/acs.organomet.5b00200 

Chen, Y.; Choi, S.; Thompson, L. T. "Low-Temperature CO2 Hydrogenation to Liquid Products via a Heterogeneous Cascade Catalytic System" ACS Catal., v.5, 2015, p.1717. doi:10.1021/cs501656x 

Manbeck, Kimberly A.; Brennessel, William W.; Jones, William D. "Examination of a dicationic rhodium methyl aquo complex" INORGANICA CHIMICA ACTA, v.397, 2013, p.140-143.

Connor, G. P.; Lease, N.; Casuras, A.; Goldman, A. S.; Holland, P. L.; Mayer, J. M. "Protonation and Electrochemical Reduction of Rhodium- and Iridium-dinitrogen Complexes in Organic Solution" Dalton Trans., v.46, 2017, p.14325. doi:10.1039/C7DT03476H 

Chen, Y.; Choi, S.; Thompson, L. T. "Low Temperature CO2 Hydrogenation to Alcohols and Hydrocarbons over Mo2C Supported Metal Catalysts" J. Catal., v., 2016, p.147. doi:10.1016/j.jcat.2016.01.016 

Sedai, B.; Diaz-Urrutia, C.; Baker, R. T.; Wu, R.; Silks, L. A.; Hanson, S. K. "Aerobic Oxidation of ?-1 Lignin Model Compounds with Copper and Oxovanadium Catalysts" ACS Catalysis, v.3, 2013, p.3111. doi:http://dx.doi.org/10.1021/cs400636k 

Xiao, H.; Z. Bao, Z.; Zhao, H. "High Throughput Screening and Selection Methods for Directed Enzyme Evolution" Ind. Eng. Chem. Res., v.54, 2015, p.4011. doi:10.1021/ie503060a 

Zhou, M.; Goldman, A. S. "Chlorination of (Phebox)Ir(mesityl)(OAc) by Thionyl Chloride" Molecules, v.20, 2015, p.10122. doi:10.3390/molecules200610122 

Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R. M.; Miller, A. J. M.; Appel, A. M. "Thermodynamic Hydricity of Transition Metal Hydrides" Chem. Rev, v.116, 2016, p.8655. doi:10.1021/acs.chemrev.6b00168 

Wilklow-Marnell, M.; Brennessel, W. W.; Jones, W. D. "Formation of 5-Membered Metallacycles at iPrPCPIr by C?H, O?H, and C?CO Bond Cleavage" Polyhedron, v.116, 2016, p.38. doi:10.1016/j.poly.2016.03.018 

Wilklow-Marnell, M.; Li, B.; Zhou, T.; Krogh-Jespersen, K.; Brennessel, W. W.; Emge, T. J.; Goldman, A. S.; Jones, W. D. "Catalytic Dehydrogenative C-C Coupling by a Pincer-Ligated Iridium Complex" J. Am. Chem. Soc, v.139, 2017, p.8977. doi:10.1021/jacs.7b03433 

Sues, P. E.; Bukhryakov, K. V.; Schrock, R. R. "Evaluation of Several Molybdenum and Ruthenium Catalysts for the Metathesis Homocoupling of 3-Methyl-1-Butene" Helv. Chim. Acta, v.100, 2017, p.e1700181. doi:10.1002/hlca.201700181 

Brewster, T. P., Tran, J. C., Heinekey, D. M., Goldberg, K. I. "High Catalytic Efficiency Combined with High Selectivity for the Aldehyde-Water Shift using (para-cymene)Ruthenium Precatalysts" ACS Catal, v.6, 2016, p.6302. doi:10.1021/acscatal.6b02130 

Chen, Y.; Thompson, L. T. "Liquid phase CO2 hydrogenation to methanol over Mo2C-based catalysts" Prepr. Symp. - Am. Chem. Soc., Div. Fuel Chem., v.59, 2014, p.395.

Xu, R.; Chakraborty, S.; Yuan, H.; Jones, W. D. "Acceptorless, Reversible Dehydrogenation and Hydrogenation of N-heterocycles with a Cobalt Pincer Catalyst" ACS Catalysis, v.5, 2015, p.6350. doi:10.1021/acscatal.5b02002 

O'Connor, Abby R.; Kaminsky, Werner; Chan, Benny C.; Heinekey, D. Michael; Goldberg, Karen I. "Synthesis and Characterization of Iridium(I) and Iridium(III) Complexes Containing Dialkylbiphenylphosphines" ORGANOMETALLICS, v.32, 2013, p.4016-4019.

Denard, D. A.; Ren, H.; Zhao, H. "Improving and Repurposing Biocatalysts via Directed Evolution" Curr. Opin. Chem. Biol., v.25, 2015, p.55. doi:10.1016/j.cbpa.2014.12.036 

Denard, C.; Hartwig, J. F.; Zhao, H. "Multistep One-pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis" ACS Catalysis, v.3, 2013, p.2856. doi:http://dx.doi.org/10.1021/cs400633a 

Gallo, J. M. R.; Alamillo, R.; Dumesic, J. A. "Acid-Functionalized Mesoporous Carbons for the Continuous Production of 5-Hydroxymethylfurfural" J. Mol. Catal. A: Chem., v.422, 2016, p.13. doi:10.1016/j.molcata.2016.01.005 

Lekich, T. T.; Askelson, P. G.; Burdick, R. K.; Heinekey, D. M. "An Improved Synthesis of Me4PCP and DMPE" Organometallics, v.37, 2018, p.211. doi:10.1021/acs.organomet.7b00780 

Wyvratt, B. M.; Gaudet, J. R.; Pardue, D. B.; Marton, A.; Rudic, S.; Mader, E. A.; Cundari, T. R.; Mayer, J. M.; Thompson, L. T. "Reactivity of Hydrogen On and In Nanostructured Molybdenum Nitride: Crotonaldehyde Hydrogenation" ACS Catal., v.6, 2016, p.5797. doi:10.1021/acscatal.6b00936 

Yao, W.; Jia, X.; Leng, X.; Goldman, A. S.; Brookhart, M.; Huang, Z. "Catalytic Alkane Transfer-Dehydrogenation by PSCOP Iridium Pincer Complexes" Polyhedron, v.116, 2016, p.12. doi:10.1016/j.poly.2016.02.044 

Shrestha, Ruja; Mukherjee, Paramita; Tan, Yichen; Litman, Zachary C.; Hartwig, John F. "Sterically Controlled, Palladium-Catalyzed Intermolecular Amination of Arenes" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.135, 2013, p.8480-8483.

Denard, C. A.; Bartlett, M. J.; Wang, Y.; Lu, L.; Hartwig, J. F.; Zhao, H. "Development of a One-Pot Tandem Reaction Combining Ruthenium-catalyzed Alkene Metathesis and Enantioselective Enzymatic Oxidation to Produce Aryl Epoxides" ACS Catal., v.5, 2015, p.3817. doi:10.1021/acscatal.5b00533 

Lyons, T. W.; Bezier, D.; Brookhart, M. "Iridium Pincer-Catalyzed Dehydrogenation of Ethers Featuring Ethylene as the Hydrogen Acceptor" Organometallics, v.34, 2015, p.4058. doi:10.1021/acs.organomet.5b00501 

Bukhryakov, K. V.; VenkatRamani, S.; Tsay, C.; Hoveyda, A.; Schrock, R. R. "Syntheses of Molybdenum Adamantylimido and t-Butylimido Alkylidene Chloride Complexes Using HCl and Diphenylmethylphosphine" Organometallics, v.36, 2017, p.4208. doi:10.1021/acs.organomet.7b00647 

Denard, C. A.; Huang, H.; Bartlett, M. J.; Lu, L.; Tan, Y.; Zhao, H.; Hartwig, J. F. "Cooperative Tandem Catalysis by an Organometallic Complex and a Metalloenzyme" Angew. Chem. Int. Ed. Eng., v.53, 2014, p.465. doi:http://dx.doi.org/10.1002/anie.201305778 


Project Outcomes Report

Disclaimer

This Project Outcomes Report for the General Public is displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the PI and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content.

The Center for Enabling New Technologies through Catalysis (CENTC) was established in 2007 as the first NSF Phase II Center for Chemical Innovation, and received renewal funding in 2012 through this award. CENTC brought together 20 senior investigators and their students and postdocs from across North America to address collaboratively one of society's most pressing needs: the development of new methods for the sustainable production of chemicals and fuels that are efficient, cost-effective, and environmentally benign. In particular, CENTC scientists worked on the development of new types of catalysts. Catalysts are materials that are added to chemical reactions to accelerate their rate, to allow the reactions to occur at lower temperatures, and to increase the selectivity of a reaction to form one specific product. Catalysts can even make new reactions possible to afford novel products or to allow the use of different starting materials (that may be more readily available, less expensive, or less toxic) to make a desired product. The current production of the materials our society needs, such as fuels, plastics, and drugs, already nearly all relies on catalysts. Developing new and more efficient catalysts will allow the US to better utilize our natural resources, lower chemical waste production, and help move toward a sustainable society.

Chemists and chemical engineers in CENTC collaborated to understand, design, and develop new catalytic systems for the chemical industry. CENTC researchers have gained basic knowledge and devised innovative catalytic methodologies. Among many significant results, some selected high-impact outcomes from CENTC collaborative research are:

  • The Hartwig and Zhao groups developed cooperative tandem catalytic systems in which organometallic catalysts and enzymes (biocatalysts) work together to synthesize desired products. The strategies established in this work do not require the costly isolation and purification of intermediates, and can be applied to a range of chemical transformations of interest in the manufacture of pharmaceuticals and other fine chemicals.
  • The Sanford group expanded investigations to report new cascade pathways for hydrogenation of carbon dioxide. In the future, their discoveries could help change carbon dioxide from a waste product to an economically viable feedstock.
  • The Goldberg, Goldman, Jones and Cundari groups expanded an extensive mechanistic understanding of C-H activation and aerobic functionalization by pincer-ligand complexes of iridium. The principles elucidated will be applicable to the development of many useful hydrocarbon conversion reactions.
  • The Brookhart, Goldman and Schrock groups invented several methods for the synthesis of high value petrochemicals such as xylene and butadiene directly from ethylene, an inexpensive feedstock due to the recent abundance of ethane-rich shale gas.

 The collaborative approach of CENTC offered a unique training experience for 196 undergraduate students, graduate students, and postdoctoral researchers whose research was supported through this award, of whom 49% are women or from other groups underrepresented in the sciences. The skills they learned in working effectively on team projects helped them to go on to secure employment in industry, government agencies and laboratories, and academia. Dozens of other students and postdocs benefited from the enhanced training environment of CENTC through participation in CENTC educational programs, such as the Catalysis Summer Schools that CENTC organized in 2013 and 2015, and through participation in CENTC outreach programs.

CENTC established a vigorous program to disseminate, to broad segments of the public, information about CENTC research and the impact of catalysts on daily life. CENTC developed content and contributed to a variety of projects and exhibits at prominent science museums across the US. In August 2013 a new multi-touch table activity developed by CENTC, "Molecule Magic" debuted at the Liberty Science Center, which is located in Liberty State Park, New Jersey. In 2016, CENTC partnered with the Pacific Science Center in Seattle WA to develop an entire exhibit, "Chemists - Catalysts for Change" that incorporated this multi-touch table game, an interactive demo of a catalytic converter, a build-a-molecule activity, and other hands-on elements. CENTC also organized high school outreach programs in Washington State, New Jersey, and Michigan that reached a large audience of future scientists. These high school programs were organized and led by CENTC students and postdocs, and a strong message was transmitted that the high school students, irrespective of their race, gender or income level, could participate in science and in doing so help find solutions to some of society's most pressing problems.

 


Last Modified: 12/19/2018
Modified by: Karen I Goldberg

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.