Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Awardee:UNIVERSITY OF HAWAII SYSTEMS
Doing Business As Name:University of Hawaii
PD/PI:
  • Garrett T Apuzen-Ito
  • (808) 956-9717
  • gito@hawaii.edu
Award Date:11/24/2019
Estimated Total Award Amount: $ 327,816
Funds Obligated to Date: $ 31,635
  • FY 2020=$31,635
Start Date:03/15/2020
End Date:02/29/2024
Transaction Type:Grant
Agency:NSF
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.050
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:Collaborative Research: An Open Access Experiment to Seismically Image Galapagos Plume-Ridge Interaction
Federal Award ID Number:1927087
DUNS ID:965088057
Parent DUNS ID:009438664
Program:Marine Geology and Geophysics
Program Officer:
  • Deborah K. Smith
  • (703) 292-7978
  • dksmith@nsf.gov

Awardee Location

Street:2440 Campus Road, Box 368
City:HONOLULU
State:HI
ZIP:96822-2234
County:Honolulu
Country:US
Awardee Cong. District:01

Primary Place of Performance

Organization Name:University of Hawaii
Street:1680 East-West Rd. POST 810
City:Honolulu
State:HI
ZIP:96822-2225
County:Honolulu
Country:US
Cong. District:01

Abstract at Time of Award

On Earth there are three fundamental ways in which volcanoes form. This study will examine how two of these styles behave in proximity. The Galapagos archipelago is a well-known example of hotspot volcanism, fed by a rising plume of hot mantle, and this system is interacting with the Galapagos Spreading Center (GSC) where volcanism occurs in response to seafloor spreading at the boundary between two tectonic plates moving apart. Scientists have studied the Galapagos hotspot-GSC system for several decades and have long puzzled over persistent discrepancies between geophysical and geochemical observations and physical models for how the pair work together. This study will image how mass and temperature are transported, as well as how magma is generated beneath the Galapagos system, using a technique called seismic tomography. A network of instruments spanning a large area of the islands and adjacent seafloor will be deployed. These seismometers will record seismic waves traveling from distant earthquakes and ambient ground displacement over a period of 15 months. As the seismic waves pass beneath the study area, they respond to differences in mantle composition, temperature, deformation, and the presence of magma. Imaging these properties will allow many unanswered questions particular to the Galapagos system to be addressed. The study will also address the fundamental processes occurring in the shallow part of the mantle that is hot and weak and the interactions with the the cool, stiff overlying part that forms Earth's tectonic plates. This program will train three graduate students in marine geophysics. In addition, an Apply-to-Sail program will allow graduate students and early career scientists from other institutions and community college instructors to participate on the research cruises to gain sea-going training. Lastly, Ecuadorian scientists and graduate students will also participate on the cruises, bolstering science education and international research collaboration. To produce the first mantle seismic view of how mantle plume-ridge interaction really works, an open-access seismic dataset will be collected around the Galapagos system. The experiment and subsequent analyses are designed to address three main scientific questions: (i) At what depths, in what geographic pattern, and by what mechanism does mantle plume material flow northward to the Galapagos Spreading Center and disperse along the ridge? (ii) Do the scale and nature of heterogeneity indicate small-scale, sub-lithospheric convection? and (iii) What is the spatial distribution of melting and volatile release, as well as the associated heterogeneity in composition and rheology due to plume-ridge interaction? The Galapagos system is exceptionally well-suited for such a study given the history of previous investigations of the surface manifestations, the evidence from mantle tomography below the Galapagos Archipelago, and the favorable azimuthal distribution of seismic sources. A large number (53) ocean-bottom, broadband seismometers will be deployed for 15 months in an array spanning the area between the Galapagos Islands and the Western Galapagos Spreading Center. Data from 7 broadband stations on the islands also will be used. The data will undergo initial processing, including ambient noise cross-correlation, and be archived in the IRIS-DMC for immediate public use. Tomography models of isotropic velocity will be produced from body waves, isotropic velocity from the combination of surface waves and ambient noise, as well as radial and azimuthal anisotropy from surface waves. Receiver functions will be analyzed to identify discontinuities related to the lithosphere and melting and shear wave splitting will be used to map anisotropy. Geodynamic models of plume-ridge interaction will be used for hypothesis testing by comparing modeled and observed seismic waveforms, and by using the geodynamic models as a priori information for the tomographic inversions. The project will also substantially advance a broad understanding of mantle plume processes, the asthenosphere, and their interactions with oceanic lithosphere; specifically, the deployment will function as a unit array within the Pacific Array Initiative. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.