Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Doing Business As Name:University of The Virgin Islands
  • Marilyn Brandt
  • (340) 693-1376
  • Tyler Smith
Award Date:04/25/2019
Estimated Total Award Amount: $ 33,296
Funds Obligated to Date: $ 33,296
  • FY 2019=$33,296
Start Date:05/01/2019
End Date:04/30/2021
Transaction Type:Grant
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.050
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:RAPID: Collaborative Research: Predicting the Spread of Multi-Species Coral Disease Using Species Immune Traits
Federal Award ID Number:1928753
DUNS ID:090003765
Parent DUNS ID:090003765
Program Officer:
  • Daniel J. Thornhill
  • (703) 292-8143

Awardee Location

Street:#2 John Brewers Bay
City:Charlotte Amalie
County:St Thomas
Awardee Cong. District:00

Primary Place of Performance

Organization Name:University of The Virgin Islands
County:St Thomas
Cong. District:00

Abstract at Time of Award

Title: Predicting the Spread of Multi-Species Coral Disease Using Species Immune Traits Coral reef ecosystems provide substantial economic resources to the societies of the United States Virgin Islands (USVI) and other US locations in the forms of tourism, fishing and coastal protection. However, reefs are among the most threatened marine environments, and coral disease is having a devastating impact on these valued systems. In early 2019, a multi-species rapid tissue loss disease matching the description of stony coral tissue loss disease (SCTLD) was found severely affecting a reef off the southwest coast of St. Thomas in the US Virgin Islands (USVI). SCTLD has been devastating coral reef communities in southeast Florida for the last four years, and was very recently reported from disparate areas around the Caribbean, including Mexico, Jamaica, and St. Martin. Rapid surveys by the investigators at the University of the Virgin Islands believe that a 50 km2 area southwest of St. Thomas is the initial incidence area of the disease, but will likely spread across the USVI, British Virgin Islands, and Puerto Rico. This study performs experiments to understand how this disease affects coral species immune traits and compares the microbiology and physiology of disease samples in the USVI to samples from Florida. It also examines how changing the species composition of a coral community affects the spread and impact of the disease. The overall aim is to produce a model to predict the impact of multi-species disease spread on reefs based on coral species assemblages. The project contributes to the research training of at least 2 undergraduates, 2 M.S. students, and 3 Ph.D. students, who benefit from cross-investigator mentoring. The research team includes representatives to the Coral Disease Advisory Committees for the USVI and Florida, which ensures rapid communication of findings to management bodies in both regions. Coral disease is a significant and increasing threat to Caribbean coral reef systems. Recent results demonstrate that coral species immune traits can predict disease resistance, and thus, forecast impacts to coral community structure, under multi-species coral disease. The onset of this epizootic in the USVI offers an unprecedented opportunity to test hypotheses about the impact of coral resistance, tolerance and immune traits on disease spread during the early stages of an outbreak that could profoundly change the diversity of Caribbean reefs. It is hypothesized that the abundance of highly susceptible species dictates 1) the onset of disease at reef sites downstream of the initial incidence area, and 2) the spread of disease within reef sites. Furthermore, 3) downstream reef sites where highly susceptible species are removed or treated show lower immune responses in all susceptible corals, later onset of disease, and slower within-site disease spread. To test these hypotheses, two experiments directly compare species responses to disease exposure and test the effect of species assemblage on coral immune function and disease spread. Results from these experiments aim to inform a generalizable model to predict the impact of multi-species disease spread on reefs based on coral species assemblages. Results of this project include direct comparison of the USVI disease to Florida SCTLD and a better understanding of how the abundance of highly susceptible host species impacts the spread of disease during the early onset of a multi-species panzootic. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.