Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Doing Business As Name:University of Illinois at Urbana-Champaign
  • Farzad Kamalabadi
  • (217) 333-4406
Award Date:08/16/2019
Estimated Total Award Amount: $ 2,729,140
Funds Obligated to Date: $ 1,180,415
  • FY 2019=$1,180,415
Start Date:10/01/2019
End Date:09/30/2023
Transaction Type:Grant
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.050
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:Collaborative Research: CubeSat Ideas Lab: VIrtual Super-resolution Optics with Reconfigurable Swarms (VISORS)
Federal Award ID Number:1936663
DUNS ID:041544081
Parent DUNS ID:041544081
Program:Space Weather Research
Program Officer:
  • Lisa Winter
  • (703) 292-8519

Awardee Location

Street:1901 South First Street
Awardee Cong. District:13

Primary Place of Performance

Organization Name:University of Illinois at Urbana-Champaign
Street:506 S. Wright St.
Cong. District:13

Abstract at Time of Award

CubeSats are miniaturized, low-weight, low-cost satellites. Due to these properties, constellations of 10s-100s of CubeSats with specialized instruments for studying the space environment provide a new exciting opportunity to understand and predict space weather. The Virtual Super-resolution Optics with Reconfigurable Swarms (VISORS) mission supports the advancement of using constellations of CubeSats for space weather through designing, building, and operating three satellites that together form an ultraviolet telescope for observing the Sun. VISORS has a transformative technological approach; it will be the first distributed telescope using several breakthrough technologies, including: novel photon sieve optics, precision formation flying, and 5G-inspired high data rate communications between the spacecraft. The transformative optics utilized by the mission will allow high spatial and temporal observations of nanoflares that are potentially an important source of heating of the solar corona. The VISORS mission supports STEM education and public outreach. Graduate and undergraduate students will actively participate in all mission stages. The project will also develop an open-source software toolkit to support the design and optimization of CubeSat that can be utilized in classrooms. Further, a hands-on demonstration of the virtual telescope will be developed for a science museum exhibit. This project resulted from the Ideas Lab: Cross-cutting Initiative in CubeSat Innovations, an interdisciplinary program supported by Geosciences, Engineering, and Computer and Information Science and Engineering Directorates. VISORS will provide a transformational leap in addressing the origins of the processes heating the solar corona by revealing filamentary coronal structures as narrow as 160 milliarcseconds and use the spatial and temporal characteristics of those structures to constrain physical models of nanoflares much more powerfully than the indirect methods used to date. In addition to addressing one of the most fundamental open questions in geospace science, VISORS will validate several breakthrough technologies. The technological innovations range from the demonstration of the first distributed ultraviolet telescope with unprecedented angular resolution, novel photon sieve optics, and CubeSat precision formation flying, to the demonstration of sub-kilometer proximity operations on CubeSat swarms, including low-interference propulsive maneuvers; navigation, control, and autonomy; and 5G-inspired high data-rate inter-CubeSat swarm communication and networking. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.