Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Doing Business As Name:Utah State University
  • Colby Tofel-Grehl
  • (435) 797-1226
Award Date:01/15/2020
Estimated Total Award Amount: $ 869,770
Funds Obligated to Date: $ 167,282
  • FY 2020=$167,282
Start Date:02/01/2020
End Date:01/31/2025
Transaction Type:Grant
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.076
Primary Program Source:040106 NSF Education & Human Resource
Award Title or Description:CAREER: Job Embedded Education on Computational Thinking for Rural STEM Discipline Teachers
Federal Award ID Number:1942500
DUNS ID:072983455
Parent DUNS ID:072983455
Program:Discovery Research K-12
Program Officer:
  • Wu He
  • (703) 292-7593

Awardee Location

Street:Sponsored Programs Office
Awardee Cong. District:01

Primary Place of Performance

Organization Name:Utah State University
Street:2805 Old Main Hill
Cong. District:01

Abstract at Time of Award

This project will develop a new way of engaging teachers in professional learning that is situated in their classrooms while they perform the tasks of their paid employment. Traditional professional development structures frequently place financial and professional pressures on teachers, which limits participation. Rural teachers in particular may have fewer opportunities due to barriers of distance, limited resources, and lack of available staff. In addition, they often rely on the income from second jobs to meet their financial obligations, meaning they are unable to take advantage of optional professional development opportunities offered after school hours, on weekends, or during summers because they cannot afford the lost income or travel time. Further, they are most likely to be underqualified and most likely to spend their entire teaching careers at their first district—prospectively teaching multiple generations of students from their community. The state of Hawaii has a high proportion of such rural schools and a shortage of STEM teachers — especially in the area of computer science. This project will investigate a professional development model using fading scaffolds (support that is gradually reduced over time) as part of participants’ paid summer school teaching. Through this model, 20 rural teachers will learn to integrate computational thinking, coding, and science content while working with students from their own communities, with 10 becoming master teachers supporting others throughout the state. Improving teachers’ ability to prepare students to benefit from opportunities in STEM and computing will advance students’ opportunities for future prosperity. This CAREER project will develop a professional development model that allows rural secondary teachers to learn and develop computational thinking related teaching skills with long-term support and scaffolds in place to both build their knowledge and the long-term capacity of their school districts. Using a design-based research approach, this project entails extensive participant interviews, video observations, and analysis of classroom artifacts. Cultural-historical activity theory analysis will be applied both collectively and within a comparative case study format to understand individual teacher development within the context of their own content and classrooms over time. These data will inform subsequent iterative design decisions to revise strategies and materials for greater meaningfulness and utility in supporting teachers' implementation of computer science and computational thinking applications. This project will enhance academic achievement of approximately 1000 students (predominantly Pacific Islanders, a group largely underrepresented in STEM fields with a unique cultural identity) in meeting the Next Generation Science Standards and Hawaii's computer science education standards. The CAREER program is a National Science Foundation (NSF)-wide activity that offers awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education, and the integration of education and research within the context of the mission of their organizations. This project is supported by NSF's Discovery Research PreK-12 (DRK-12) program. DRK-12 seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.