Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Doing Business As Name:University of Texas at Austin
  • Manish Kumar
  • (619) 917-7392
Award Date:09/16/2019
Estimated Total Award Amount: $ 43,293
Funds Obligated to Date: $ 43,293
  • FY 2018=$43,293
Start Date:08/27/2019
End Date:08/31/2021
Transaction Type:Grant
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.041
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:Collaborative Research: Active Transport of Lipid Vesicles in Osmotic Gradients
Federal Award ID Number:1952295
DUNS ID:170230239
Parent DUNS ID:042000273
Program:FD-Fluid Dynamics
Program Officer:
  • Ron Joslin
  • (703) 292-7030

Awardee Location

Street:3925 W Braker Lane, Ste 3.340
Awardee Cong. District:10

Primary Place of Performance

Organization Name:Univeristy of Texas at Austin
Street:2304 Whitis Avenue
Cong. District:25

Abstract at Time of Award

The membranes of living cells are highly and selectively permeable to water. Variations in the osmotic pressure due to dissolved molecules drives water transport across the membrane, thereby inducing fluid flows and membrane motions. Such flows are critical to biological processes such as the regulation of cell water content, the transport of intra- and extracellular compartments, and the migration of cells in tissues. Despite their importance, the fundamental fluid mechanics underlying these processes remains poorly understood. This project aims to advance our understanding of fluid flows and membrane motions driven by osmotic gradients. Such knowledge will further enable biotechnologies involving the extraction, separation, and delivery of extracellular vesicles, which are actively pursued as diagnostic and therapeutic tools for treating human diseases. The project will also provide educational opportunities to middle and high school students from underrepresented groups through laboratory tours and summer research experiences. The central goal of the research is to develop experimental platforms and theoretical models that elucidate the physical mechanisms underlying the motion of lipid vesicles in osmotic gradients ? a process called osmophoresis. Using microfluidic systems, the research will quantify vesicle velocity as a function of membrane properties such as vesicle size, permeability, rigidity, tension / excess area, and surface charge as well as environmental properties such as solute type, gradient magnitude, fluid viscosity, and confinement. Notably, the project will use lipid membranes incorporating aquaporin water channels to create high permeability vesicles that mimic native exosomes. The experiments will provide definitive data with which to enhance our understanding of osmophoresis and its impact on vesicle transport in biology. The proposed theory will integrate previous work on the osmophoresis of rigid spherical membranes with models of membrane dynamics that account for deformation and flow within incompressible lipid bilayers. The theoretical investigations will ultimately reproduce and explain experimental observations of rapid vesicle motions in osmotic gradients. Finally, the demonstration of osmophoretic vesicle sorting will provide a fundamental basis for biotechnologies involving the separation and characterization of extracellular vesicles. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.