Skip directly to content

Minimize RSR Award Detail

Research Spending & Results

Award Detail

Doing Business As Name:Brown University
  • Jon D Witman
  • (401) 863-3936
Award Date:06/29/2020
Estimated Total Award Amount: $ 200,000
Funds Obligated to Date: $ 200,000
  • FY 2020=$200,000
Start Date:07/01/2020
End Date:06/30/2021
Transaction Type:Grant
Awarding Agency Code:4900
Funding Agency Code:4900
CFDA Number:47.050
Primary Program Source:040100 NSF RESEARCH & RELATED ACTIVIT
Award Title or Description:RAPID: Illuminating the effects of a COVID-19 elimination of diver disturbance on reef fish behavior, distribution and ecosystem functioning in the Galapagos Marine Reserve
Federal Award ID Number:2035354
DUNS ID:001785542
Parent DUNS ID:001785542
Program Officer:
  • Michael Sieracki
  • (703) 292-7585

Awardee Location

Street:BOX 1929
Awardee Cong. District:01

Primary Place of Performance

Organization Name:Charles Darwin Research Station
Street:Avenida Charles Darwin
City:Puerto Ayora Galapagos

Abstract at Time of Award

Large-scale changes in the magnitude of human influence on the biosphere have occurred due to travel restrictions and quarantines to contain the COVID-19 pandemic. The reduction in the number of visits to natural areas is providing an unprecedented opportunity to study the effects of people on wildlife and ecosystems. Previous studies indicate that humans can impact the entire ecosystem by frightening animals and altering their behaviors. The COVID-19 quarantine has created a "natural experiment" in the ocean at scuba-diving destinations worldwide by suspending dive tourism and temporarily eliminating the effects of diver-induced fear in reef fish communities. In the Galapagos Islands, the number of scuba divers dropped from 18,000 divers a year to zero in March 2020 when the government of Ecuador halted dive tourism. This study is measuring the changes reef fish behavior, populations and ecological interactions between species to gain an understanding of how dive activity affects the functioning of this marine ecosystem. The effects of changes in diver disturbance are being determined by comparing reef fish communities during and after the quarantine to those from a long-term pre-COVID-19 baseline study. Broader impacts include training opportunities for undergraduate students through participation in field research and senior thesis projects. Public outreach is focused on presentations to the general public and high school students in the US and in the Galapagos. A YouTube video on the ecological effects of diving activity in the Galapagos Marine Reserve is being produced and made publicly available. Insights from this project is increasing awareness of how humans impact subtidal marine ecosystems, which is aiding marine conservation efforts of marine protected areas in the Galapagos and elsewhere. The intellectual contribution of the research lies in its ability to test hypotheses about the role of humans in influencing consumptive and non-consumptive interactions in shaping the structure, complexity and functioning of marine ecosystems. While it is known that reef fish react to humans as potential predators, less is known about how the fear of predation, a major type of non-consumptive interaction, affects subtidal marine communities, particularly on large spatial scales relevant to conservation. An integrated, observational - experimental research program is addressing this knowledge gap in the Galapagos Marine Reserve by comparing current conditions with existing pre-COVID-19 data. Four hypotheses or predictions related to pandemic spillover effects are being tested: 1) diver disturbance results in behavioral shifts in reef fishes; 2) divers decrease the abundance and diversity of reef fishes and this effect is currently reduced; 3) emergence or increased abundance of previously wary herbivorous and /or predatory fish results in greater consumption of benthic organisms during and immediately after the COVID-19 period; and 4) decreased diver disturbance associated with the pandemic changes the complexity of behavioral networks (aggressive and positive interactions) among reef fish, sharks and sea lions. The hypotheses are being tested at 14 sites over the course of three research trips using underwater observations and experiments involving fish counts, video camera deployments to record fish behaviors, feeding rates, interactions between species and underwater boat noise from dive tour boats. This project has implications for understanding how fish communities in the Galapagos Marine Reserve ecosystem will respond to future perturbations, while also providing unique insight into the ecological ramifications of a human pandemic. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

For specific questions or comments about this information including the NSF Project Outcomes Report, contact us.